Here we catalog the full set of Butcher tables included in ARKODE. We group
these into four categories: explicit , implicit , additive and
symplectic partitioned .
However, since the methods that comprise an additive Runge–Kutta method are
themselves explicit and implicit, their component Butcher tables are listed
within their separate sections, but are referenced together in the additive
section.
In each of the following tables, we use the following notation (shown
for a 3-stage method):
\[\begin{split}\begin{array}{r|ccc}
c_1 & a_{1,1} & a_{1,2} & a_{1,3} \\
c_2 & a_{2,1} & a_{2,2} & a_{2,3} \\
c_3 & a_{3,1} & a_{3,2} & a_{3,3} \\
\hline
q & b_1 & b_2 & b_3 \\
p & \tilde{b}_1 & \tilde{b}_2 & \tilde{b}_3
\end{array}\end{split}\]
Method authors often use different naming conventions to categorize
their methods. For each of the methods below with an embedding, we follow the
uniform naming convention:
Additionally, for each method we provide a plot of the linear
stability region in the complex plane. These have been computed via
the following approach. For any Runge–Kutta method as defined above,
we may define the stability function
is typically given by an enclosed region of the complex plane, so it
is standard to search for the border of that region in order to
understand the method. Since all complex numbers with unit magnitude
may be written as \(e^{i\theta}\) for some value of \(\theta\) ,
we perform the following algorithm to trace out this boundary.
2.8.1. Explicit Butcher tables
In the category of explicit Runge–Kutta methods, ARKODE includes
methods that have orders 2 through 6, with embeddings that are of
orders 1 through 5. Each of ARKODE’s explicit Butcher tables are
specified via a unique ID and name:
enum ARKODE_ERKTableID
with values specified for each method below (e.g., ARKODE_HEUN_EULER_2_1_2
).
2.8.1.5. ARK2-ERK-3-1-2
Accessible via the constant ARKODE_ARK2_ERK_3_1_2
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or
ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ARK2_ERK_3_1_2"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the explicit portion of the default 2nd order additive method (the
explicit portion of the ARK2 method from [57 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccc}
0 & 0 & 0 & 0 \\
2 - \sqrt{2} & 2 - \sqrt{2} & 0 & 0 \\
1 & 1 - \frac{3 + 2\sqrt{2}}{6} & \frac{3 + 2\sqrt{2}}{6} & 0 \\
\hline
2 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & 1 - \frac{1}{\sqrt{2}} \\
1 & \frac{4 - \sqrt{2}}{8} & \frac{4 - \sqrt{2}}{8} & \frac{1}{2\sqrt{2}} \\
\end{array}\end{split}\]
Fig. 2.6 Linear stability region for the ARK2-ERK method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.6. Bogacki-Shampine-4-2-3
Accessible via the constant ARKODE_BOGACKI_SHAMPINE_4_2_3
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or
ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_BOGACKI_SHAMPINE_4_2_3"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the default 3rd order
explicit method (from [18 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccc}
0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{3}{4} & 0 & \frac{3}{4} & 0 & 0 \\
1 & \frac{2}{9} & \frac{1}{3} & \frac{4}{9} & 0 \\
\hline
3 & \frac{2}{9} & \frac{1}{3} & \frac{4}{9} \\
2 & \frac{7}{24} & \frac{1}{4} & \frac{1}{3} & \frac{1}{8}
\end{array}\end{split}\]
Fig. 2.7 Linear stability region for the Bogacki-Shampine method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.7. ARK324L2SA-ERK-4-2-3
Accessible via the constant ARKODE_ARK324L2SA_ERK_4_2_3
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or
ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ARK324L2SA_ERK_4_2_3"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the explicit portion of
the default 3rd order additive method (the explicit portion of the ARK3(2)4L[2]SA
method from [81 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccc}
0 & 0 & 0 & 0 & 0 \\
\frac{1767732205903}{2027836641118} & \frac{1767732205903}{2027836641118} & 0 & 0 & 0 \\
\frac{3}{5} & \frac{5535828885825}{10492691773637} & \frac{788022342437}{10882634858940} & 0 & 0 \\
1 & \frac{6485989280629}{16251701735622} & -\frac{4246266847089}{9704473918619} & \frac{10755448449292}{10357097424841} & 0 \\
\hline
3 & \frac{1471266399579}{7840856788654} & -\frac{4482444167858}{7529755066697} & \frac{11266239266428}{11593286722821} & \frac{1767732205903}{4055673282236} \\
2 & \frac{2756255671327}{12835298489170} & -\frac{10771552573575}{22201958757719} & \frac{9247589265047}{10645013368117} & \frac{2193209047091}{5459859503100}
\end{array}\end{split}\]
Fig. 2.8 Linear stability region for the explicit ARK-4-2-3 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.8. Shu-Osher-3-2-3
Accessible via the constant ARKODE_SHU_OSHER_3_2_3
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or
ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_SHU_OSHER_3_2_3"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
(from [116 ] with embedding from [55 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\
\hline
3 & \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\
2 & \frac{291485418878409}{1000000000000000} & \frac{291485418878409}{1000000000000000} & \frac{208514581121591}{500000000000000}
\end{array}\end{split}\]
Fig. 2.9 Linear stability region for the Shu-Osher method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.10. Sofroniou-Spaletta-5-3-4
Accessible via the constant ARKODE_SOFRONIOU_SPALETTA_5_3_4
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_SOFRONIOU_SPALETTA_5_3_4"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
(from [120 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{5} & \frac{2}{5} & 0 & 0 & 0 & 0 \\
\frac{3}{5} & -\frac{3}{20} & \frac{3}{4} & 0 & 0 & 0 \\
1 & \frac{19}{44} & -\frac{15}{44} & \frac{10}{11} & 0 & 0 \\
1 & \frac{11}{72} & \frac{25}{72} & \frac{25}{72} & \frac{11}{72} & 0 \\
\hline
4 & \frac{11}{72} & \frac{25}{72} & \frac{25}{72} & \frac{11}{72} & 0 \\
3 & \frac{1251515}{8970912} & \frac{3710105}{8970912} & \frac{2519695}{8970912} & \frac{61105}{8970912} & \frac{119041}{747576} \\
\end{array}\end{split}\]
Fig. 2.11 Linear stability region for the Sofroniou-Spaletta method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.11. Zonneveld-5-3-4
Accessible via the constant ARKODE_ZONNEVELD_5_3_4
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
, or
ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ZONNEVELD_5_3_4"
to
ARKStepSetTableName()
, ERKStepSetTableName()
, or
ARKodeButcherTable_LoadERKByName()
.
This is the default 4th order explicit method
(from [134 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\frac{3}{4} & \frac{5}{32} & \frac{7}{32} & \frac{13}{32} & -\frac{1}{32} & 0 \\
\hline
4 & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & 0 \\
3 & -\frac{1}{2} & \frac{7}{3} & \frac{7}{3} & \frac{13}{6} & -\frac{16}{3}
\end{array}\end{split}\]
Fig. 2.12 Linear stability region for the Zonneveld method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.12. ARK436L2SA-ERK-6-3-4
Accessible via the constant ARKODE_ARK436L2SA_ERK_6_3_4
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ARK436L2SA_ERK_6_3_4"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the explicit portion of the default 4th order additive method (the
explicit portion of the ARK4(3)6L[2]SA method from [81 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac12 & \frac12 & 0 & 0 & 0 & 0 & 0 \\
\frac{83}{250} & \frac{13861}{62500} & \frac{6889}{62500} & 0 & 0 & 0 & 0 \\
\frac{31}{50} & -\frac{116923316275}{2393684061468} & -\frac{2731218467317}{15368042101831} & \frac{9408046702089}{11113171139209} & 0 & 0 & 0 \\
\frac{17}{20} & -\frac{451086348788}{2902428689909} & -\frac{2682348792572}{7519795681897} & \frac{12662868775082}{11960479115383} & \frac{3355817975965}{11060851509271} & 0 & 0 \\
1 & \frac{647845179188}{3216320057751} & \frac{73281519250}{8382639484533} & \frac{552539513391}{3454668386233} & \frac{3354512671639}{8306763924573} & \frac{4040}{17871} & 0 \\
\hline
4 & \frac{82889}{524892} & 0 & \frac{15625}{83664} & \frac{69875}{102672} & -\frac{2260}{8211} & \frac14 \\
3 & \frac{4586570599}{29645900160} & 0 & \frac{178811875}{945068544} & \frac{814220225}{1159782912} & -\frac{3700637}{11593932} & \frac{61727}{225920}
\end{array}\end{split}\]
Fig. 2.13 Linear stability region for the ARK436L2SA-ERK-6-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.13. ARK437L2SA-ERK-7-3-4
Accessible via the constant ARKODE_ARK437L2SA_ERK_7_3_4
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ARK437L2SA_ERK_7_3_4"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the explicit portion of the 4th order additive method (the explicit
portion of the ARK4(3)7L[2]SA method from [84 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{247}{1000} & \frac{247}{1000} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{4276536705230}{10142255878289} & \frac{247}{4000} & \frac{2694949928731}{7487940209513} & 0 & 0 & 0 & 0 & 0 \\
\frac{67}{200} & \frac{464650059369}{8764239774964} & \frac{878889893998}{2444806327765} & -\frac{952945855348}{12294611323341} & 0 & 0 & 0 & 0 \\
\frac{3}{40} & \frac{476636172619}{8159180917465} & -\frac{1271469283451}{7793814740893} & -\frac{859560642026}{4356155882851} & \frac{1723805262919}{4571918432560} & 0 & 0 & 0 \\
\frac{7}{10} & \frac{6338158500785}{11769362343261} & -\frac{4970555480458}{10924838743837} & \frac{3326578051521}{2647936831840} & -\frac{880713585975}{1841400956686} & -\frac{1428733748635}{8843423958496} & 0 & 0 \\
1 & \frac{760814592956}{3276306540349} & \frac{760814592956}{3276306540349} & -\frac{47223648122716}{6934462133451} & \frac{71187472546993}{9669769126921} & -\frac{13330509492149}{9695768672337} & \frac{11565764226357}{8513123442827} & 0 \\
\hline
4 & 0 & 0 & \frac{9164257142617}{17756377923965} & -\frac{10812980402763}{74029279521829} & \frac{1335994250573}{5691609445217} & \frac{2273837961795}{8368240463276} & \frac{247}{2000} \\
3 & 0 & 0 & \frac{4469248916618}{8635866897933} & -\frac{621260224600}{4094290005349} & \frac{696572312987}{2942599194819} & \frac{1532940081127}{5565293938103} & \frac{2441}{20000}
\end{array}\end{split}\]
Fig. 2.14 Linear stability region for the ARK437L2SA-ERK-7-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.14. Sayfy-Aburub-6-3-4
Accessible via the constant ARKODE_SAYFY_ABURUB_6_3_4
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_SAYFY_ABURUB_6_3_4"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
(from [108 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 2 & 0 & 0 & 0 & 0 \\
1 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 & 0 & 0 \\
\frac{1}{2} & 0.137 & 0.226 & 0.137 & 0 & 0 & 0 \\
1 & 0.452 & -0.904 & -0.548 & 0 & 2 & 0 \\
\hline
4 & \frac{1}{6} & \frac{1}{3} & \frac{1}{12} & 0 & \frac{1}{3} & \frac{1}{12} \\
3 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 & 0 & 0
\end{array}\end{split}\]
Fig. 2.15 Linear stability region for the Sayfy-Aburub-6-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.15. Cash-Karp-6-4-5
Accessible via the constant ARKODE_CASH_KARP_6_4_5
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_CASH_KARP_6_4_5"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the default 5th order explicit method (from [35 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{10} & \frac{3}{40} & \frac{9}{40} & 0 & 0 & 0 & 0 \\
\frac{3}{5} & \frac{3}{10} & -\frac{9}{10} & \frac{6}{5} & 0 & 0 & 0 \\
1 & -\frac{11}{54} & \frac{5}{2} & -\frac{70}{27} & \frac{35}{27} & 0 & 0 \\
\frac{7}{8} & \frac{1631}{55296} & \frac{175}{512} & \frac{575}{13824} & \frac{44275}{110592} & \frac{253}{4096} & 0 \\
\hline
5 & \frac{37}{378} & 0 & \frac{250}{621} & \frac{125}{594} & 0 & \frac{512}{1771} \\
4 & \frac{2825}{27648} & 0 & \frac{18575}{48384} & \frac{13525}{55296} & \frac{277}{14336} & \frac{1}{4}
\end{array}\end{split}\]
Fig. 2.16 Linear stability region for the Cash-Karp method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.16. Fehlberg-6-4-5
Accessible via the constant ARKODE_FEHLBERG_6_4_5
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_FEHLBERG_6_4_5"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
(from [54 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{8} & \frac{3}{32} & \frac{9}{32} & 0 & 0 & 0 & 0 \\
\frac{12}{13} & \frac{1932}{2197} & -\frac{7200}{2197} & \frac{7296}{2197} & 0 & 0 & 0 \\
1 & \frac{439}{216} & -8 & \frac{3680}{513} & -\frac{845}{4104} & 0 & 0 \\
\frac{1}{2} & -\frac{8}{27} & 2 & -\frac{3544}{2565} & \frac{1859}{4104} & -\frac{11}{40} & 0 \\
\hline
5 & \frac{16}{135} & 0 & \frac{6656}{12825} & \frac{28561}{56430} & -\frac{9}{50} & \frac{2}{55} \\
4 & \frac{25}{216} & 0 & \frac{1408}{2565} & \frac{2197}{4104} & -\frac{1}{5} & 0
\end{array}\end{split}\]
Fig. 2.17 Linear stability region for the Fehlberg method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.17. Dormand-Prince-7-4-5
Accessible via the constant ARKODE_DORMAND_PRINCE_7_4_5
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_DORMAND_PRINCE_7_4_5"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
(from [45 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{10} & \frac{3}{40} & \frac{9}{40} & 0 & 0 & 0 & 0 & 0 \\
\frac{4}{5} & \frac{44}{45} & -\frac{56}{15} & \frac{32}{9} & 0 & 0 & 0 & 0 \\
\frac{8}{9} & \frac{19372}{6561} & -\frac{25360}{2187} & \frac{64448}{6561} & -\frac{212}{729} & 0 & 0 & 0 \\
1 & \frac{9017}{3168} & -\frac{355}{33} & \frac{46732}{5247} & \frac{49}{176} & -\frac{5103}{18656} & 0 & 0 \\
1 & \frac{35}{384} & 0 & \frac{500}{1113} & \frac{125}{192} & -\frac{2187}{6784} & \frac{11}{84} & 0 \\
\hline
5 & \frac{35}{384} & 0 & \frac{500}{1113} & \frac{125}{192} & -\frac{2187}{6784} & \frac{11}{84} & 0 \\
4 & \frac{5179}{57600} & 0 & \frac{7571}{16695} & \frac{393}{640} & -\frac{92097}{339200} & \frac{187}{2100} & \frac{1}{40}
\end{array}\end{split}\]
Fig. 2.18 Linear stability region for the Dormand-Prince method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.18. ARK548L2SA-ERK-8-4-5
Accessible via the constant ARKODE_ARK548L2SA_ERK_8_4_5
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ARK548L2SA_ERK_8_4_5"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the explicit portion of the default 5th order additive method (the
explicit portion of the ARK5(4)8L[2]SA method from [81 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{41}{100} & \frac{41}{100} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2935347310677}{11292855782101} & \frac{367902744464}{2072280473677} & \frac{677623207551}{8224143866563} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1426016391358}{7196633302097} & \frac{1268023523408}{10340822734521} & 0 & \frac{1029933939417}{13636558850479} & 0 & 0 & 0 & 0 & 0 \\
\frac{92}{100} & \frac{14463281900351}{6315353703477} & 0 & \frac{66114435211212}{5879490589093} & -\frac{54053170152839}{4284798021562} & 0 & 0 & 0 & 0 \\
\frac{24}{100} & \frac{14090043504691}{34967701212078} & 0 & \frac{15191511035443}{11219624916014} & -\frac{18461159152457}{12425892160975} & -\frac{281667163811}{9011619295870} & 0 & 0 & 0 \\
\frac{3}{5} & \frac{19230459214898}{13134317526959} & 0 & \frac{21275331358303}{2942455364971} & -\frac{38145345988419}{4862620318723} & -\frac{1}{8} & -\frac{1}{8} & 0 & 0 \\
1 & -\frac{19977161125411}{11928030595625} & 0 & -\frac{40795976796054}{6384907823539} & \frac{177454434618887}{12078138498510} & \frac{782672205425}{8267701900261} & -\frac{69563011059811}{9646580694205} & \frac{7356628210526}{4942186776405} & 0 \\
\hline
5 & -\frac{872700587467}{9133579230613} & 0 & 0 & \frac{22348218063261}{9555858737531} & -\frac{1143369518992}{8141816002931} & -\frac{39379526789629}{19018526304540} & \frac{32727382324388}{42900044865799} & \frac{41}{200} \\
4 & -\frac{975461918565}{9796059967033} & 0 & 0 & \frac{78070527104295}{32432590147079} & -\frac{548382580838}{3424219808633} & -\frac{33438840321285}{15594753105479} & \frac{3629800801594}{4656183773603} & \frac{4035322873751}{18575991585200}
\end{array}\end{split}\]
Fig. 2.19 Linear stability region for the explicit ARK-8-4-5 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.19. ARK548L2SAb-ERK-8-4-5
Accessible via the constant ARKODE_ARK548L2SAb_ERK_8_4_5
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_ARK548L2SAb_ERK_8_4_5"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the explicit portion of the 5th order ARK5(4)8L[2]SA method from
[84 ] .
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{4}{9} & \frac{4}{9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{6456083330201}{8509243623797} & \frac{1}{9} & \frac{1183333538310}{1827251437969} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1632083962415}{14158861528103} & \frac{895379019517}{9750411845327} & \frac{477606656805}{13473228687314} & \frac{-112564739183}{9373365219272} & 0 & 0 & 0 & 0 & 0 \\
\frac{6365430648612}{17842476412687} & \frac{-4458043123994}{13015289567637} & \frac{-2500665203865}{9342069639922} & \frac{983347055801}{8893519644487} & \frac{2185051477207}{2551468980502} & 0 & 0 & 0 & 0 \\
\frac{18}{25} & \frac{-167316361917}{17121522574472} & \frac{1605541814917}{7619724128744} & \frac{991021770328}{13052792161721} & \frac{2342280609577}{11279663441611} & \frac{3012424348531}{12792462456678} & 0 & 0 & 0 \\
\frac{191}{200} & \frac{6680998715867}{14310383562358} & \frac{5029118570809}{3897454228471} & \frac{2415062538259}{6382199904604} & \frac{-3924368632305}{6964820224454} & \frac{-4331110370267}{15021686902756} & \frac{-3944303808049}{11994238218192} & 0 & 0 \\
1 & \frac{2193717860234}{3570523412979} & \frac{2193717860234}{3570523412979} & \frac{5952760925747}{18750164281544} & \frac{-4412967128996}{6196664114337} & \frac{4151782504231}{36106512998704} & \frac{572599549169}{6265429158920} & \frac{-457874356192}{11306498036315} & 0 \\
\hline
5 & 0 & 0 & \frac{3517720773327}{20256071687669} & \frac{4569610470461}{17934693873752} & \frac{2819471173109}{11655438449929} & \frac{3296210113763}{10722700128969} & \frac{-1142099968913}{5710983926999} & \frac{2}{9} \\
4 & 0 & 0 & \frac{520639020421}{8300446712847} & \frac{4550235134915}{17827758688493} & \frac{1482366381361}{6201654941325} & \frac{5551607622171}{13911031047899} & \frac{-5266607656330}{36788968843917} & \frac{1074053359553}{5740751784926}
\end{array}\end{split}\]
Fig. 2.20 Linear stability region for the ARK548L2SAb-ERK-8-4-5 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.20. Verner-8-5-6
Accessible via the constant ARKODE_VERNER_8_5_6
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_VERNER_8_5_6"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the default 6th order explicit method (from [129 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{6} & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{4}{15} & \frac{4}{75} & \frac{16}{75} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{3} & \frac{5}{6} & -\frac{8}{3} & \frac{5}{2} & 0 & 0 & 0 & 0 & 0 \\
\frac{5}{6} & -\frac{165}{64} & \frac{55}{6} & -\frac{425}{64} & \frac{85}{96} & 0 & 0 & 0 & 0 \\
1 & \frac{12}{5} & -8 & \frac{4015}{612} & -\frac{11}{36} & \frac{88}{255} & 0 & 0 & 0 \\
\frac{1}{15} & -\frac{8263}{15000} & \frac{124}{75} & -\frac{643}{680} & -\frac{81}{250} & \frac{2484}{10625} & 0 & 0 & 0 \\
1 & \frac{3501}{1720} & -\frac{300}{43} & \frac{297275}{52632} & -\frac{319}{2322} & \frac{24068}{84065} & 0 & \frac{3850}{26703} & 0 \\
\hline
6 & \frac{3}{40} & 0 & \frac{875}{2244} & \frac{23}{72} & \frac{264}{1955} & 0 & \frac{125}{11592} & \frac{43}{616} \\
5 & \frac{13}{160} & 0 & \frac{2375}{5984} & \frac{5}{16} & \frac{12}{85} & \frac{3}{44} & 0 & 0
\end{array}\end{split}\]
Fig. 2.21 Linear stability region for the Verner-8-5-6 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.21. Verner-9-5-6
Accessible via the constant ARKODE_VERNER_9_5_6
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_VERNER_9_5_6"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the 6th order explicit method IIIXb-6(5) from [130 ] .
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccccc}
0 & 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{3}{50} & \frac{3}{50}& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1439}{15000} & \frac{519479}{27000000}& \frac{2070721}{27000000}& 0& 0& 0& 0& 0& 0& 0\\
\frac{1439}{10000} & \frac{1439}{40000}& 0& \frac{4317}{40000}& 0& 0& 0& 0& 0& 0\\
\frac{4973}{10000} & \frac{109225017611}{82828840000}& 0& -\frac{417627820623}{82828840000}& \frac{43699198143}{10353605000}& 0& 0& 0& 0& 0\\
\frac{389}{400} & -\frac{8036815292643907349452552172369}{191934985946683241245914401600}& 0& \frac{246134619571490020064824665}{1543816496655405117602368}& -\frac{13880495956885686234074067279}{113663489566254201783474344}& \frac{755005057777788994734129}{136485922925633667082436}& 0& 0& 0& 0\\
\frac{1999}{2000} & -\frac{1663299841566102097180506666498880934230261}{30558424506156170307020957791311384232000}& 0& \frac{130838124195285491799043628811093033}{631862949514135618861563657970240}& -\frac{3287100453856023634160618787153901962873}{20724314915376755629135711026851409200}& \frac{2771826790140332140865242520369241}{396438716042723436917079980147600}& -\frac{1799166916139193}{96743806114007800}& 0& 0& 0\\
1 & -\frac{832144750039369683895428386437986853923637763}{15222974550069600748763651844667619945204887}& 0& \frac{818622075710363565982285196611368750}{3936576237903728151856072395343129}& -\frac{9818985165491658464841194581385463434793741875}{61642597962658994069869370923196463581866011}& \frac{31796692141848558720425711042548134769375}{4530254033500045975557858016006308628092}& -\frac{14064542118843830075}{766928748264306853644}& -\frac{1424670304836288125}{2782839104764768088217}& 0& 0\\
1 & \frac{382735282417}{11129397249634}& 0& 0& \frac{5535620703125000}{21434089949505429}& \frac{13867056347656250}{32943296570459319}& \frac{626271188750}{142160006043}& -\frac{51160788125000}{289890548217}& \frac{163193540017}{946795234}& 0\\
\hline
6 & \frac{382735282417}{11129397249634}& 0& 0& \frac{5535620703125000}{21434089949505429}& \frac{13867056347656250}{32943296570459319}& \frac{626271188750}{142160006043}& -\frac{51160788125000}{289890548217}& \frac{163193540017}{946795234}& 0 \\
5 & \frac{273361583}{5567482366}& 0& 0& \frac{1964687500000}{8727630165387}& \frac{596054687500}{1269637976277}& \frac{12740367500}{15795556227}& 0& -\frac{4462730789736252634813752317}{7350663039626676022821734166}& \frac{441454562788983500}{7763730504400359099}
\end{array}\end{split}\]
Fig. 2.22 Linear stability region for the Verner-9-5-6 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.22. Verner-10-6-7
Accessible via the constant ARKODE_VERNER_10_6_7
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_VERNER_10_6_7"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the default 7th order explicit method (from [130 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccccc}
0 & 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1}{200} & \frac{1}{200}& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{49}{450} & -\frac{4361}{4050}& \frac{2401}{2025}& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{49}{300} & \frac{49}{1200}& 0& \frac{49}{400}& 0& 0& 0& 0& 0& 0& 0\\
\frac{911}{2000} & \frac{2454451729}{3841600000}& 0& -\frac{9433712007}{3841600000}& \frac{4364554539}{1920800000}& 0& 0& 0& 0& 0& 0\\
\frac{3480084980}{5709648941} & -\frac{6187101755456742839167388910402379177523537620}{2324599620333464857202963610201679332423082271}& 0& \frac{27569888999279458303270493567994248533230000}{2551701010245296220859455115479340650299761}& -\frac{37368161901278864592027018689858091583238040000}{4473131870960004275166624817435284159975481033}& \frac{1392547243220807196190880383038194667840000000}{1697219131380493083996999253929006193143549863}& 0& 0& 0& 0& 0\\
\frac{221}{250} & \frac{11272026205260557297236918526339}{1857697188743815510261537500000}& 0& -\frac{48265918242888069}{1953194276993750}& \frac{26726983360888651136155661781228}{1308381343805114800955157615625}& -\frac{2090453318815827627666994432}{1096684189897834170412307919}& \frac{1148577938985388929671582486744843844943428041509}{1141532118233823914568777901158338927629837500000}& 0& 0& 0& 0\\
\frac{37}{40} & \frac{1304457204588839386329181466225966641}{108211771565488329642169667802016000}& 0& -\frac{1990261989751005}{40001418792832}& \frac{2392691599894847687194643439066780106875}{58155654089143548047476915856270826016}& -\frac{1870932273351008733802814881998561250}{419326053051486744762255151208232123}& \frac{1043329047173803328972823866240311074041739158858792987034783181}{510851127745017966999893975119259285040213723744255237522144000}& -\frac{311918858557595100410788125}{3171569057622789618800376448}& 0& 0& 0\\
1 & \frac{17579784273699839132265404100877911157}{1734023495717116205617154737841023480}& 0& -\frac{18539365951217471064750}{434776548575709731377}& \frac{447448655912568142291911830292656995992000}{12511202807447096607487664209063950964109}& -\frac{65907597316483030274308429593905808000000}{15158061430635748897861852383197382130691}& \frac{273847823027445129865693702689010278588244606493753883568739168819449761}{136252034448398939768371761610231099586032870552034688235302796640584360}& \frac{694664732797172504668206847646718750}{1991875650119463976442052358853258111}& -\frac{19705319055289176355560129234220800}{72595753317320295604316217197876507}& 0& 0\\
1 & -\frac{511858190895337044664743508805671}{11367030248263048398341724647960}& 0& \frac{2822037469238841750}{15064746656776439}& -\frac{23523744880286194122061074624512868000}{152723005449262599342117017051789699}& \frac{10685036369693854448650967542704000000}{575558095977344459903303055137999707}& -\frac{6259648732772142303029374363607629515525848829303541906422993}{876479353814142962817551241844706205620792843316435566420120}& \frac{17380896627486168667542032602031250}{13279937889697320236613879977356033}& 0& 0& 0\\
\hline
7 & \frac{96762636172307789}{2051985304794103980}& 0& 0& \frac{312188947591288252500000}{1212357694274963646019729}& \frac{13550580884964304000000000000}{51686919683339547115937980629}& \frac{72367769693133178898676076432831566019684378142853445230956642801}{475600216991873963561768100160364792981629064220601844848928537580}& \frac{1619421054120605468750}{3278200730370057108183}& -\frac{66898316144057728000}{227310933007074849597}& \frac{181081444637946577}{2226845467039736466}& 0 \\
6 & \frac{117807213929927}{2640907728177740}& 0& 0& \frac{4758744518816629500000}{17812069906509312711137}& \frac{1730775233574080000000000}{7863520414322158392809673}& \frac{2682653613028767167314032381891560552585218935572349997}{12258338284789875762081637252125169126464880985167722660}& \frac{40977117022675781250}{178949401077111131341}& 0& 0& \frac{2152106665253777}{106040260335225546}
\end{array}\end{split}\]
Fig. 2.23 Linear stability region for the Verner-10-6-7 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.23. Fehlberg-13-7-8
Accessible via the constant ARKODE_FEHLBERG_13_7_8
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_FEHLBERG_13_7_8"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the default 8th order explicit method (from [26 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccccccccc}
0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{2}{27}& \frac{2}{27}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1}{9}& \frac{1}{36}& \frac{1}{12}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1}{6}& \frac{1}{24}& 0& \frac{1}{8}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{5}{12}& \frac{5}{12}& 0& -\frac{25}{16}& \frac{25}{16}& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1}{2}& \frac{1}{20}& 0& 0& \frac{1}{4}& \frac{1}{5}& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{5}{6}& -\frac{25}{108}& 0& 0& \frac{125}{108}& -\frac{65}{27}& \frac{125}{54}& 0& 0& 0& 0& 0& 0& 0\\
\frac{1}{6}& \frac{31}{300}& 0& 0& 0& \frac{61}{225}& -\frac{2}{9}& \frac{13}{900}& 0& 0& 0& 0& 0& 0\\
\frac{2}{3}& 2& 0& 0& -\frac{53}{6}& \frac{704}{45}& -\frac{107}{9}& \frac{67}{90}& 3& 0& 0& 0& 0& 0\\
\frac{1}{3}& -\frac{91}{108}& 0& 0& \frac{23}{108}& -\frac{976}{135}& \frac{311}{54}& -\frac{19}{60}& \frac{17}{6}& -\frac{1}{12}& 0& 0& 0& 0\\
1& \frac{2383}{4100}& 0& 0& -\frac{341}{164}& \frac{4496}{1025}& -\frac{301}{82}& \frac{2133}{4100}& \frac{45}{82}& \frac{45}{164}& \frac{18}{41}& 0& 0& 0\\
0& \frac{3}{205}& 0& 0& 0& 0& -\frac{6}{41}& -\frac{3}{205}& -\frac{3}{41}& \frac{3}{41}& \frac{6}{41}& 0& 0& 0\\
1& -\frac{1777}{4100}& 0& 0& -\frac{341}{164}& \frac{4496}{1025}& -\frac{289}{82}& \frac{2193}{4100}& \frac{51}{82}& \frac{33}{164}& \frac{12}{41}& 0& 1& 0\\
\hline
8& 0& 0& 0& 0& 0& \frac{34}{105}& \frac{9}{35}& \frac{9}{35}& \frac{9}{280}& \frac{9}{280}& 0& \frac{41}{840}& \frac{41}{840} \\
7& \frac{41}{840}& 0& 0& 0& 0& \frac{34}{105}& \frac{9}{35}& \frac{9}{35}& \frac{9}{280}& \frac{9}{280}& \frac{41}{840}& 0& 0
\end{array}\end{split}\]
Fig. 2.24 Linear stability region for the Fehlberg-13-7-8 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.24. Verner-13-7-8
Accessible via the constant ARKODE_VERNER_13_7_8
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_VERNER_13_7_8"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the 8th order explicit method IIIX-8(7) from [130 ] .
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccccccccc}
0 & 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1}{20} & \frac{1}{20}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{341}{3200} & -\frac{7161}{1024000}& \frac{116281}{1024000}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{1023}{6400} & \frac{1023}{25600}& 0& \frac{3069}{25600}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{39}{100} & \frac{4202367}{11628100}& 0& -\frac{3899844}{2907025}& \frac{3982992}{2907025}& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{93}{200} & \frac{5611}{114400}& 0& 0& \frac{31744}{135025}& \frac{923521}{5106400}& 0& 0& 0& 0& 0& 0& 0& 0\\
\frac{31}{200} & \frac{21173}{343200}& 0& 0& \frac{8602624}{76559175}& -\frac{26782109}{689364000}& \frac{5611}{283500}& 0& 0& 0& 0& 0& 0& 0\\
\frac{943}{1000} & -\frac{1221101821869329}{690812928000000}& 0& 0& -\frac{125}{2}& -\frac{1024030607959889}{168929280000000}& \frac{1501408353528689}{265697280000000}& \frac{6070139212132283}{92502016000000}& 0& 0& 0& 0& 0& 0\\
\frac{7067558016280}{7837150160667} & -\frac{1472514264486215803881384708877264246346044433307094207829051978044531801133057155}{1246894801620032001157059621643986024803301558393487900440453636168046069686436608}& 0& 0& -\frac{5172294311085668458375175655246981230039025336933699114138315270772319372469280000}{124619381004809145897278630571215298365257079410236252921850936749076487132995191}& -\frac{12070679258469254807978936441733187949484571516120469966534514296406891652614970375}{2722031154761657221710478184531100699497284085048389015085076961673446140398628096}& \frac{780125155843893641323090552530431036567795592568497182701460674803126770111481625}{183110425412731972197889874507158786859226102980861859505241443073629143100805376}& \frac{664113122959911642134782135839106469928140328160577035357155340392950009492511875}{15178465598586248136333023107295349175279765150089078301139943253016877823170816}& \frac{10332848184452015604056836767286656859124007796970668046446015775000000}{1312703550036033648073834248740727914537972028638950165249582733679393783}& 0& 0& 0& 0& 0\\
\frac{909}{1000} & -\frac{29055573360337415088538618442231036441314060511}{22674759891089577691327962602370597632000000000}& 0& 0& -\frac{20462749524591049105403365239069}{454251913499893469596231268750}& -\frac{180269259803172281163724663224981097}{38100922558256871086579832832000000}& \frac{21127670214172802870128286992003940810655221489}{4679473877997892906145822697976708633673728000}& \frac{318607235173649312405151265849660869927653414425413}{6714716715558965303132938072935465423910912000000}& \frac{212083202434519082281842245535894}{20022426044775672563822865371173879}& -\frac{2698404929400842518721166485087129798562269848229517793703413951226714583}{469545674913934315077000442080871141884676035902717550325616728175875000000}& 0& 0& 0& 0\\
\frac{47}{50} & -\frac{2342659845814086836951207140065609179073838476242943917}{1358480961351056777022231400139158760857532162795520000}& 0& 0& -\frac{996286030132538159613930889652}{16353068885996164905464325675}& -\frac{26053085959256534152588089363841}{4377552804565683061011299942400}& \frac{20980822345096760292224086794978105312644533925634933539}{3775889992007550803878727839115494641972212962174156800}& \frac{890722993756379186418929622095833835264322635782294899}{13921242001395112657501941955594013822830119803764736}& \frac{161021426143124178389075121929246710833125}{10997207722131034650667041364346422894371443}& \frac{300760669768102517834232497565452434946672266195876496371874262392684852243925359864884962513}{4655443337501346455585065336604505603760824779615521285751892810315680492364106674524398280000}& -\frac{31155237437111730665923206875}{392862141594230515010338956291}& 0& 0& 0\\
1 & -\frac{2866556991825663971778295329101033887534912787724034363}{868226711619262703011213925016143612030669233795338240}& 0& 0& -\frac{16957088714171468676387054358954754000}{143690415119654683326368228101570221}& -\frac{4583493974484572912949314673356033540575}{451957703655250747157313034270335135744}& \frac{2346305388553404258656258473446184419154740172519949575}{256726716407895402892744978301151486254183185289662464}& \frac{1657121559319846802171283690913610698586256573484808662625}{13431480411255146477259155104956093505361644432088109056}& \frac{345685379554677052215495825476969226377187500}{74771167436930077221667203179551347546362089}& -\frac{3205890962717072542791434312152727534008102774023210240571361570757249056167015230160352087048674542196011}{947569549683965814783015124451273604984657747127257615372449205973192657306017239103491074738324033259120}& \frac{40279545832706233433100438588458933210937500}{8896460842799482846916972126377338947215101}& -\frac{6122933601070769591613093993993358877250}{1050517001510235513198246721302027675953}& 0& 0\\
1 & -\frac{618675905535482500672800859344538410358660153899637}{203544282118214047100119475340667684874292102389760}& 0& 0& -\frac{4411194916804718600478400319122931000}{40373053902469967450761491269633019}& -\frac{16734711409449292534539422531728520225}{1801243715290088669307203927210237952}& \frac{135137519757054679098042184152749677761254751865630525}{16029587794486289597771326361911895112703716593983488}& \frac{38937568367409876012548551903492196137929710431584875}{340956454090191606099548798001469306974758443147264}& -\frac{6748865855011993037732355335815350667265625}{7002880395717424621213565406715087764770357}& -\frac{1756005520307450928195422767042525091954178296002788308926563193523662404739779789732685671}{348767814578469983605688098046186480904607278021030540735333862087061574934154942830062320}& \frac{53381024589235611084013897674181629296875}{8959357584795694524874969598508592944141}& 0& 0& 0\\
\hline
8 & \frac{44901867737754616851973}{1014046409980231013380680}& 0& 0& 0& 0& \frac{791638675191615279648100000}{2235604725089973126411512319}& \frac{3847749490868980348119500000}{15517045062138271618141237517}& -\frac{13734512432397741476562500000}{875132892924995907746928783}& \frac{12274765470313196878428812037740635050319234276006986398294443554969616342274215316330684448207141}{489345147493715517650385834143510934888829280686609654482896526796523353052166757299452852166040}& -\frac{9798363684577739445312500000}{308722986341456031822630699}& \frac{282035543183190840068750}{12295407629873040425991}& -\frac{306814272936976936753}{1299331183183744997286}& 0\\
7 & \frac{10835401739407019406577}{244521829356935137978320}& 0& 0& 0& 0& \frac{13908189778321895491375000}{39221135527894265375640567}& \frac{73487947527027243487625000}{296504045773342769773399443}& \frac{68293140641257649609375000}{15353208647806945749946119}& \frac{22060647948996678611017711379974578860522018208949721559448560203338437626022142776381}{1111542009262325874512959185795727215759010577565736079641376621381577236680929558640}& -\frac{547971229495642458203125000}{23237214025700991642563601}& 0& 0& -\frac{28735456870978964189}{79783493704265043693}
\end{array}\end{split}\]
Fig. 2.25 Linear stability region for the Verner-13-7-8 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.1.25. Verner-16-8-9
Accessible via the constant ARKODE_VERNER_16_8_9
to
ARKStepSetTableNum()
, ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK()
.
Accessible via the string "ARKODE_VERNER_16_8_9"
to
ARKStepSetTableName()
, ERKStepSetTableName()
or
ARKodeButcherTable_LoadERKByName()
.
This is the default 9th order explicit method (from [130 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccccccccccc}
0 & 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.03462 & 0.03462& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.09702435063878044594828361677100617517633 & -0.0389335438857287327017042687229284478532& 0.1359578945245091786499878854939346230295& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.1455365259581706689224254251565092627645 & 0.03638413148954266723060635628912731569111& 0& 0.1091523944686280016918190688673819470733& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.561 & 2.025763914393969636805657604282571047511& 0& -7.638023836496292020387602153091964592952& 6.173259922102322383581944548809393545442& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.2290079115904850126662751771814700052182 & 0.05112275589406060872792270881648288397197& 0& 0& 0.1770823794555021537929910813839068684087& 0.00080277624092225014536138698108025283759& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.5449920884095149873337248228185299947818 & 0.1316006357975216279279871693164256985334& 0& 0& -0.2957276252669636417685183174672273730699& 0.0878137803564295237421124704053886667082& 0.6213052975225274774321435005639430026100& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.645 & 0.07166666666666666666666666666666666666667& 0& 0& 0& 0& 0.3305533578915319409260346730051472207728& 0.2427799754418013924072986603281861125606& 0& 0& 0& 0& 0& 0& 0& 0& 0\\
0.48375 & 0.071806640625& 0& 0& 0& 0& 0.3294380283228177160744825466257672816401& 0.1165190029271822839255174533742327183599& -0.034013671875& 0& 0& 0& 0& 0& 0& 0& 0\\
0.06757 & 0.04836757646340646986611287718844085773549& 0& 0& 0& 0& 0.03928989925676163974333190042057047002852& 0.1054740945890344608263649267140088017604& -0.02143865284648312665982642293830533996214& -0.1041229174627194437759832813847147895623& 0& 0& 0& 0& 0& 0& 0\\
0.25 & -0.02664561487201478635337289243849737340534& 0& 0& 0& 0& 0.03333333333333333333333333333333333333333& -0.1631072244872467239162704487554706387141& 0.03396081684127761199487954930015522928244& 0.1572319413814626097110769806810024118077& 0.2152267478031879552303534778794770376960& 0& 0& 0& 0& 0& 0\\
0.6590650618730998549405331618649220295334 & 0.03689009248708622334786359863227633989718& 0& 0& 0& 0& -0.1465181576725542928653609891758501156785& 0.2242577768172024345345469822625833796001& 0.02294405717066072637090897902753790803034& -0.0035850052905728761357394424889330334334& 0.08669223316444385506869203619044453906053& 0.4383840651968337846196219974168630120572& 0& 0& 0& 0& 0\\
0.8206 & -0.4866012215113340846662212357570395295088& 0& 0& 0& 0& -6.304602650282852990657772792012007122988& -0.281245618289472564778284183790118418111& -2.679019236219849057687906597489223155566& 0.518815663924157511565311164615012522024& 1.365353187603341710683633635235238678626& 5.885091088503946585721274891680604830712& 2.802808786272062889819965117517532194812& 0& 0& 0& 0\\
0.9012 & 0.4185367457753471441471025246471931649633& 0& 0& 0& 0& 6.724547581906459363100870806514855026676& -0.425444280164611790606983409697113064616& 3.343279153001265577811816947557982637749& 0.617081663117537759528421117507709784737& -0.929966123939932833937749523988800852013& -6.099948804751010722472962837945508844846& -3.002206187889399044804158084895173690015& 0.2553202529443445472336424602988558373637& 0& 0& 0\\
1 & -0.779374086122884664644623040843840506343& 0& 0& 0& 0& -13.93734253810777678786523664804936051203& 1.252048853379357320949735183924200895136& -14.69150040801686878191527989293072091588& -0.494705058533141685655191992136962873577& 2.242974909146236657906984549543692874755& 13.36789380382864375813864978592679139881& 14.39665048665068644512236935340272139005& -0.7975813331776800379127866056663258667437& 0.4409353709534277758753793068298041158235& 0& 0\\
1 & 2.058051337466886442151242368989994043993& 0& 0& 0& 0& 22.35793772796803295519317565842520212899& 0.90949810997556332745009198137971890783& 35.89110098240264104710550686568482456493& -3.442515027624453437985000403608480262211& -4.865481358036368826566013387928704014496& -18.90980381354342625688427480879773032857& -34.26354448030451782929251177395134170515& 1.264756521695642578827783499806516664686& 0& 0& 0\\
\hline
9 & 0.01461197685842315252051541915018784713459& 0& 0& 0& 0& 0& 0& -0.3915211862331339089410228267288242030810& 0.2310932500289506415909675644868993669908& 0.1274766769992852382560589467488989175618& 0.2246434176204157731566981937082069688984& 0.5684352689748512932705226972873692126743& 0.05825871557215827200814768021863420902155& 0.1364317403482215641609022744494239843327& 0.03057013983082797397721005067920369646664& 0\\
8 & 0.01996996514886773085518508418098868756464& 0& 0& 0& 0& 0& 0& 2.191499304949330054530747099310837524864& 0.08857071848208438030833722031786358862953& 0.1140560234865965622484956605091432032674& 0.2533163805345107065564577734569651977347& -2.056564386240941011158999594595981300493& 0.3408096799013119935160094894224543812830& 0& 0& 0.04834231373823958314376726739772871714902
\end{array}\end{split}\]
Fig. 2.26 Linear stability region for the Verner-16-8-9 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2. Implicit Butcher tables
In the category of diagonally implicit Runge–Kutta methods, ARKODE
includes methods that have orders 2 through 5, with embeddings that are of
orders 1 through 4.
Each of ARKODE’s diagonally-implicit Butcher tables are
specified via a unique ID and name:
enum ARKODE_DIRKTableID
with values specified for each method below (e.g., ARKODE_SDIRK_2_1_2
).
2.8.2.2. SDIRK-2-1-2
Accessible via the constant ARKODE_SDIRK_2_1_2
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_SDIRK_2_1_2"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
This is the default 2nd order implicit method. Both the method and embedding
are A- and B-stable.
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cc}
1 & 1 & 0 \\
0 & -1 & 1 \\
\hline
2 & \frac{1}{2} & \frac{1}{2} \\
1 & 1 & 0
\end{array}\end{split}\]
Fig. 2.28 Linear stability region for the SDIRK-2-1-2 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.3. ARK2-DIRK-3-1-2
Accessible via the constant ARKODE_ARK2_DIRK_3_1_2
to
ARKStepSetTableNum()
, or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_ARK2_DIRK_3_1_2"
to
ARKStepSetTableName()
, or
ARKodeButcherTable_LoadDIRKByName()
.
This is the implicit portion of the default 2nd order additive method (the
implicit portion of the ARK2 method from [57 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccc}
0 & 0 & 0 & 0 \\
2 - \sqrt{2} & 1 - \frac{1}{\sqrt{2}} & 1 - \frac{1}{\sqrt{2}} & 0 \\
1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & 1 - \frac{1}{\sqrt{2}} \\
\hline
2 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & 1 - \frac{1}{\sqrt{2}} \\
1 & \frac{4 - \sqrt{2}}{8} & \frac{4 - \sqrt{2}}{8} & \frac{1}{2\sqrt{2}} \\
\end{array}\end{split}\]
Fig. 2.29 Linear stability region for the ARK2-DIRK method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.5. Implicit-Trapezoidal-2-2
Accessible via the constant ARKODE_IMPLICIT_TRAPEZOIDAL_2_2
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_IMPLICIT_TRAPEZOIDAL_2_2"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
The method is A-stable.
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cc}
0 & 0 & 0 \\
1 & \frac{1}{2} & \frac{1}{2} \\
\hline
2 & \frac{1}{2} & \frac{1}{2}
\end{array}\end{split}\]
Fig. 2.31 Linear stability region for the implicit trapezoidal method.
2.8.2.6. Billington-3-3-2
Accessible via the constant ARKODE_BILLINGTON_3_3_2
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_BILLINGTON_3_3_2"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Here, the higher-order embedding is less stable than the lower-order method
(from [16 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccc}
0.292893218813 & 0.292893218813 & 0 & 0 \\
1.091883092037 & 0.798989873223 & 0.292893218813 & 0 \\
1.292893218813 & 0.740789228841 & 0.259210771159 & 0.292893218813 \\
\hline
2 & 0.740789228840 & 0.259210771159 & 0 \\
3 & 0.691665115992 & 0.503597029883 & -0.195262145876
\end{array}\end{split}\]
Fig. 2.32 Linear stability region for the Billington method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.7. TRBDF2-3-3-2
Accessible via the constant ARKODE_TRBDF2_3_3_2
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_TRBDF2_3_3_2"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
As with Billington, here the higher-order embedding is less stable than the
lower-order method (from [15 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccc}
0 & 0 & 0 & 0 \\
2-\sqrt{2} & \frac{2-\sqrt{2}}{2} & \frac{2-\sqrt{2}}{2} & 0 \\
1 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{2-\sqrt{2}}{2} \\
\hline
2 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{2-\sqrt{2}}{2} \\
3 & \frac{1-\frac{\sqrt{2}}{4}}{3} & \frac{\frac{3\sqrt{2}}{4}+1}{3} & \frac{2-\sqrt{2}}{6}
\end{array}\end{split}\]
Fig. 2.33 Linear stability region for the TRBDF2 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.11. Kvaerno-4-2-3
Accessible via the constant ARKODE_KVAERNO_4_2_3
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_KVAERNO_4_2_3"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Both the method and embedding are A-stable; additionally the method is L-stable
(from [87 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccc}
0 & 0 & 0 & 0 & 0 \\
0.871733043 & 0.4358665215 & 0.4358665215 & 0 & 0 \\
1 & 0.490563388419108 & 0.073570090080892 & 0.4358665215 & 0 \\
1 & 0.308809969973036 & 1.490563388254106 & -1.235239879727145 & 0.4358665215 \\
\hline
3 & 0.308809969973036 & 1.490563388254106 & -1.235239879727145 & 0.4358665215 \\
2 & 0.490563388419108 & 0.073570090080892 & 0.4358665215 & 0
\end{array}\end{split}\]
Fig. 2.37 Linear stability region for the Kvaerno-4-2-3 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.12. ARK324L2SA-DIRK-4-2-3
Accessible via the constant ARKODE_ARK324L2SA_DIRK_4_2_3
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_ARK324L2SA_DIRK_4_2_3"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
This is the default 3rd order implicit method, and the implicit portion of the
default 3rd order additive method. Both the method and embedding are A-stable;
additionally the method is L-stable (this is the implicit portion of the
ARK3(2)4L[2]SA method from [81 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccc}
0 & 0 & 0 & 0 & 0 \\
\frac{1767732205903}{2027836641118} & \frac{1767732205903}{4055673282236} & \frac{1767732205903}{4055673282236} & 0 & 0 \\
\frac{3}{5} & \frac{2746238789719}{10658868560708} & -\frac{640167445237}{6845629431997} & \frac{1767732205903}{4055673282236} & 0 \\
1 & \frac{1471266399579}{7840856788654} & -\frac{4482444167858}{7529755066697} & \frac{11266239266428}{11593286722821} & \frac{1767732205903}{4055673282236} \\
\hline
3 & \frac{1471266399579}{7840856788654} & -\frac{4482444167858}{7529755066697} & \frac{11266239266428}{11593286722821} & \frac{1767732205903}{4055673282236} \\
2 & \frac{2756255671327}{12835298489170} & -\frac{10771552573575}{22201958757719} & \frac{9247589265047}{10645013368117} & \frac{2193209047091}{5459859503100}
\end{array}\end{split}\]
Fig. 2.38 Linear stability region for the implicit ARK324L2SA-DIRK-4-2-3 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.13. Cash-5-2-4
Accessible via the constant ARKODE_CASH_5_2_4
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_CASH_5_2_4"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Both the method and embedding are A-stable; additionally the method is L-stable
(from [34 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccc}
0.435866521508 & 0.435866521508 & 0 & 0 & 0 & 0 \\
-0.7 & -1.13586652150 & 0.435866521508 & 0 & 0 & 0 \\
0.8 & 1.08543330679 & -0.721299828287 & 0.435866521508 & 0 & 0 \\
0.924556761814 & 0.416349501547 & 0.190984004184 & -0.118643265417 & 0.435866521508 & 0 \\
1 & 0.896869652944 & 0.0182725272734 & -0.0845900310706 & -0.266418670647 & 0.435866521508 \\
\hline
4 & 0.896869652944 & 0.0182725272734 & -0.0845900310706 & -0.266418670647 & 0.435866521508 \\
2 & 1.05646216107052 & -0.0564621610705236 & 0 & 0 & 0
\end{array}\end{split}\]
Fig. 2.39 Linear stability region for the Cash-5-2-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.14. Cash-5-3-4
Accessible via the constant ARKODE_CASH_5_3_4
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_CASH_5_3_4"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Both the method and embedding are A-stable; additionally the method is L-stable
(from [34 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccc}
0.435866521508 & 0.435866521508 & 0 & 0 & 0 & 0 \\
-0.7 & -1.13586652150 & 0.435866521508 & 0 & 0 & 0 \\
0.8 & 1.08543330679 & -0.721299828287 & 0.435866521508 & 0 & 0 \\
0.924556761814 & 0.416349501547 & 0.190984004184 & -0.118643265417 & 0.435866521508 & 0 \\
1 & 0.896869652944 & 0.0182725272734 & -0.0845900310706 & -0.266418670647 & 0.435866521508 \\
\hline
4 & 0.896869652944 & 0.0182725272734 & -0.0845900310706 & -0.266418670647 & 0.435866521508 \\
3 & 0.776691932910 & 0.0297472791484 & -0.0267440239074 & 0.220304811849 & 0
\end{array}\end{split}\]
Fig. 2.40 Linear stability region for the Cash-5-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.15. SDIRK-5-3-4
Accessible via the constant ARKODE_SDIRK_5_3_4
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_SDIRK_5_3_4"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
This is the default 4th order implicit method. Here, the method is both A- and
L-stable, although the embedding has reduced stability
(from [62 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccc}
\frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 \\
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{11}{20} & \frac{17}{50} & -\frac{1}{25} & \frac{1}{4} & 0 & 0 \\
\frac{1}{2} & \frac{371}{1360} & -\frac{137}{2720} & \frac{15}{544} & \frac{1}{4} & 0 \\
1 & \frac{25}{24} & -\frac{49}{48} & \frac{125}{16} & -\frac{85}{12} & \frac{1}{4} \\
\hline
4 & \frac{25}{24} & -\frac{49}{48} & \frac{125}{16} & -\frac{85}{12} & \frac{1}{4} \\
3 & \frac{59}{48} & -\frac{17}{96} & \frac{225}{32} & -\frac{85}{12} & 0
\end{array}\end{split}\]
Fig. 2.41 Linear stability region for the SDIRK-5-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.16. Kvaerno-5-3-4
Accessible via the constant ARKODE_KVAERNO_5_3_4
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_KVAERNO_5_3_4"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Both the method and embedding are A-stable (from [87 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0.871733043 & 0.4358665215 & 0.4358665215 & 0 & 0 & 0 \\
0.468238744853136 & 0.140737774731968 & -0.108365551378832 & 0.4358665215 & 0 & 0 \\
1 & 0.102399400616089 & -0.376878452267324 & 0.838612530151233 & 0.4358665215 & 0 \\
1 & 0.157024897860995 & 0.117330441357768 & 0.61667803039168 & -0.326899891110444 & 0.4358665215 \\
\hline
4 & 0.157024897860995 & 0.117330441357768 & 0.61667803039168 & -0.326899891110444 & 0.4358665215 \\
3 & 0.102399400616089 & -0.376878452267324 & 0.838612530151233 & 0.4358665215 & 0
\end{array}\end{split}\]
Fig. 2.42 Linear stability region for the Kvaerno-5-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.17. ARK436L2SA-DIRK-6-3-4
Accessible via the constant ARKODE_ARK436L2SA_DIRK_6_3_4
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_ARK436L2SA_DIRK_6_3_4"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
This is the implicit portion of the default 4th order additive method. Both the
method and embedding are A-stable; additionally the method is L-stable (this is
the implicit portion of the ARK4(3)6L[2]SA method from [81 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 \\
\frac{83}{250} & \frac{8611}{62500} & -\frac{1743}{31250} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{31}{50} & \frac{5012029}{34652500} & -\frac{654441}{2922500} & \frac{174375}{388108} & \frac{1}{4} & 0 & 0 \\
\frac{17}{20} & \frac{15267082809}{155376265600} & -\frac{71443401}{120774400} & \frac{730878875}{902184768} & \frac{2285395}{8070912} & \frac{1}{4} & 0 \\
1 & \frac{82889}{524892} & 0 & \frac{15625}{83664} & \frac{69875}{102672} & -\frac{2260}{8211} & \frac{1}{4} \\
\hline
4 & \frac{82889}{524892} & 0 & \frac{15625}{83664} & \frac{69875}{102672} & -\frac{2260}{8211} & \frac{1}{4} \\
3 & \frac{4586570599}{29645900160} & 0 & \frac{178811875}{945068544} & \frac{814220225}{1159782912} & -\frac{3700637}{11593932} & \frac{61727}{225920}
\end{array}\end{split}\]
Fig. 2.43 Linear stability region for the ARK436L2SA-DIRK-6-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.18. ARK437L2SA-DIRK-7-3-4
Accessible via the constant ARKODE_ARK437L2SA_DIRK_7_3_4
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_ARK437L2SA_DIRK_7_3_4"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
This is the implicit portion of the 4th order ARK4(3)7L[2]SA method from
[84 ] . Both the method and embedding are A- and L-stable.
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{247}{1000} & \frac{1235}{10000} & \frac{1235}{10000} & 0 & 0 & 0 & 0 & 0 \\
\frac{4276536705230}{10142255878289} & \frac{624185399699}{4186980696204} & \frac{624185399699}{4186980696204} & \frac{1235}{10000} & 0 & 0 & 0 & 0 \\
\frac{67}{200} & \frac{1258591069120}{10082082980243} & \frac{1258591069120}{10082082980243} & -\frac{322722984531}{8455138723562} & \frac{1235}{10000} & 0 & 0 & 0 \\
\frac{3}{40} & -\frac{436103496990}{5971407786587} & -\frac{436103496990}{5971407786587} & -\frac{2689175662187}{11046760208243} & \frac{4431412449334}{12995360898505} & \frac{1235}{10000} & 0 & 0 \\
\frac{7}{10} & -\frac{2207373168298}{14430576638973} & -\frac{2207373168298}{14430576638973} & \frac{242511121179}{3358618340039} & \frac{3145666661981}{7780404714551} & \frac{5882073923981}{14490790706663} & \frac{1235}{10000} & 0 \\
1 & 0 & 0 & \frac{9164257142617}{17756377923965} & -\frac{10812980402763}{74029279521829} & \frac{1335994250573}{5691609445217} & \frac{2273837961795}{8368240463276} & \frac{1235}{10000} \\
\hline
4 & 0 & 0 & \frac{9164257142617}{17756377923965} & -\frac{10812980402763}{74029279521829} & \frac{1335994250573}{5691609445217} & \frac{2273837961795}{8368240463276} & \frac{1235}{10000} \\
3 & 0 & 0 & \frac{4469248916618}{8635866897933} & -\frac{621260224600}{4094290005349} & \frac{696572312987}{2942599194819} & \frac{1532940081127}{5565293938103} & \frac{2441}{20000}
\end{array}\end{split}\]
Fig. 2.44 Linear stability region for the ARK437L2SA-DIRK-7-3-4 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.23. Kvaerno-7-4-5
Accessible via the constant ARKODE_KVAERNO_7_4_5
to
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_KVAERNO_7_4_5"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Both the method and embedding are A-stable; additionally the method is
L-stable (from [87 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.52 & 0.26 & 0.26 & 0 & 0 & 0 & 0 & 0 \\
1.230333209967908 & 0.13 & 0.84033320996790809 & 0.26 & 0 & 0 & 0 & 0 \\
0.895765984350076 & 0.22371961478320505 & 0.47675532319799699 & -0.06470895363112615 & 0.26 & 0 & 0 & 0 \\
0.436393609858648 & 0.16648564323248321 & 0.10450018841591720 & 0.03631482272098715 & -0.13090704451073998 & 0.26 & 0 & 0 \\
1 & 0.13855640231268224 & 0 & -0.04245337201752043 & 0.02446657898003141 & 0.61943039072480676 & 0.26 & 0 \\
1 & 0.13659751177640291 & 0 & -0.05496908796538376 & -0.04118626728321046 & 0.62993304899016403 & 0.06962479448202728 & 0.26 \\
\hline
5 & 0.13659751177640291 & 0 & -0.05496908796538376 & -0.04118626728321046 & 0.62993304899016403 & 0.06962479448202728 & 0.26 \\
4 & 0.13855640231268224 & 0 & -0.04245337201752043 & 0.02446657898003141 & 0.61943039072480676 & 0.26 & 0
\end{array}\end{split}\]
Fig. 2.49 Linear stability region for the Kvaerno-7-4-5 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.24. ARK548L2SA-ESDIRK-8-4-5
Accessible via the constant ARKODE_ARK548L2SA_DIRK_8_4_5
for
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_ARK548L2SA_DIRK_8_4_5"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
This is the default 5th order implicit method, and the implicit portion of the
default 5th order additive method. Both the method and embedding are A-stable;
additionally the method is L-stable (the implicit portion of the ARK5(4)8L[2]SA
method from [81 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{41}{100} & \frac{41}{200} & \frac{41}{200} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2935347310677}{11292855782101} & \frac{41}{400} & -\frac{567603406766}{11931857230679} & \frac{41}{200} & 0 & 0 & 0 & 0 & 0 \\
\frac{1426016391358}{7196633302097} & \frac{683785636431}{9252920307686} & 0 & -\frac{110385047103}{1367015193373} & \frac{41}{200} & 0 & 0 & 0 & 0 \\
\frac{92}{100} & \frac{3016520224154}{10081342136671} & 0 & \frac{30586259806659}{12414158314087} & -\frac{22760509404356}{11113319521817} & \frac{41}{200} & 0 & 0 & 0 \\
\frac{24}{100} & \frac{218866479029}{1489978393911} & 0 & \frac{638256894668}{5436446318841} & -\frac{1179710474555}{5321154724896} & -\frac{60928119172}{8023461067671} & \frac{41}{200} & 0 & 0 \\
\frac{3}{5} & \frac{1020004230633}{5715676835656} & 0 & \frac{25762820946817}{25263940353407} & -\frac{2161375909145}{9755907335909} & -\frac{211217309593}{5846859502534} & -\frac{4269925059573}{7827059040749} & \frac{41}{200} & 0 \\
1 & -\frac{872700587467}{9133579230613} & 0 & 0 & \frac{22348218063261}{9555858737531} & -\frac{1143369518992}{8141816002931} & -\frac{39379526789629}{19018526304540} & \frac{32727382324388}{42900044865799} & \frac{41}{200} \\
\hline
5 & -\frac{872700587467}{9133579230613} & 0 & 0 & \frac{22348218063261}{9555858737531} & -\frac{1143369518992}{8141816002931} & -\frac{39379526789629}{19018526304540} & \frac{32727382324388}{42900044865799} & \frac{41}{200} \\
4 & -\frac{975461918565}{9796059967033} & 0 & 0 & \frac{78070527104295}{32432590147079} & -\frac{548382580838}{3424219808633} & -\frac{33438840321285}{15594753105479} & \frac{3629800801594}{4656183773603} & \frac{4035322873751}{18575991585200}
\end{array}\end{split}\]
Fig. 2.50 Linear stability region for the implicit ARK548L2SA-ESDIRK-8-4-5 method. The method’s
region is outlined in blue; the embedding’s region is in red.
2.8.2.25. ARK548L2SAb-DIRK-8-4-5
Accessible via the constant ARKODE_ARK548L2SAb_DIRK_8_4_5
for
ARKStepSetTableNum()
or
ARKodeButcherTable_LoadDIRK()
.
Accessible via the string "ARKODE_ARK548L2SAb_DIRK_8_4_5"
to
ARKStepSetTableName()
or
ARKodeButcherTable_LoadDIRKByName()
.
Both the method and embedding are A-stable; additionally the method is L-stable
(this is the implicit portion of the 5th order ARK5(4)8L[2]SA method from
[84 ] ).
\[\begin{split}\renewcommand{\arraystretch}{1.5}
\begin{array}{r|cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{4}{9} & \frac{2}{9} & \frac{2}{9} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{6456083330201}{8509243623797} & \frac{2366667076620}{8822750406821} & \frac{2366667076620}{8822750406821} & \frac{2}{9} & 0 & 0 & 0 & 0 & 0 \\
\frac{1632083962415}{14158861528103} & -\frac{257962897183}{4451812247028} & -\frac{257962897183}{4451812247028} & \frac{128530224461}{14379561246022} & \frac{2}{9} & 0 & 0 & 0 & 0 \\
\frac{6365430648612}{17842476412687} & -\frac{486229321650}{11227943450093} & -\frac{486229321650}{11227943450093} & -\frac{225633144460}{6633558740617} & \frac{1741320951451}{6824444397158} & \frac{2}{9} & 0 & 0 & 0 \\
\frac{18}{25} & \frac{621307788657}{4714163060173} & \frac{621307788657}{4714163060173} & -\frac{125196015625}{3866852212004} & \frac{940440206406}{7593089888465} & \frac{961109811699}{6734810228204} & \frac{2}{9} & 0 & 0 \\
\frac{191}{200} & \frac{2036305566805}{6583108094622} & \frac{2036305566805}{6583108094622} & -\frac{3039402635899}{4450598839912} & -\frac{1829510709469}{31102090912115} & -\frac{286320471013}{6931253422520} & \frac{8651533662697}{9642993110008} & \frac{2}{9} & 0 \\
1 & 0 & 0 & \frac{3517720773327}{20256071687669} & \frac{4569610470461}{17934693873752} & \frac{2819471173109}{11655438449929} & \frac{3296210113763}{10722700128969} & -\frac{1142099968913}{5710983926999} & \frac{2}{9} \\
\hline
5 & 0 & 0 & \frac{3517720773327}{20256071687669} & \frac{4569610470461}{17934693873752} & \frac{2819471173109}{11655438449929} & \frac{3296210113763}{10722700128969} & -\frac{1142099968913}{5710983926999} & \frac{2}{9} \\
4 & 0 & 0 & \frac{520639020421}{8300446712847} & \frac{4550235134915}{17827758688493} & \frac{1482366381361}{6201654941325} & \frac{5551607622171}{13911031047899} & -\frac{5266607656330}{36788968843917} & \frac{1074053359553}{5740751784926}
\end{array}\end{split}\]
Fig. 2.51 Linear stability region for the ARK548L2SAb-DIRK-8-4-5 method. The method’s
region is outlined in blue; the embedding’s region is in red.